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Abstract

The results of theoretical and experimental studies of the efficiency of noise reduction from excited steel
thin-walled structures, modernized with the help of discrete vibration-damping inserts, are presented. As part
of the study, an analysis of the factors of dissipation of vibration energy of a plate with inserts was performed.
A scheme for placing vibration-damping discrete inserts in the structure under study has been developed. To
determine the wave resistance of the damping insert in the plate, a design scheme is adopted. It is hypothesized
that during the propagation of flexural waves, the process of dissipation of flexural vibrational energy in a plate
with discrete rubber inserts is determined by dry and viscoelastic friction between the elements of the structure
under study. It is shown that the process of dissipation of vibrational energy in the plate under study is the same
as in a system of excited plates with individual anti-vibration blocks located on its surface. When developing
a mathematical model of noise reduction from an oscillating plate with discrete vibration-damping inserts, the
necessary suggestions and assumptions were made. The results of experimental studies are presented in the
form of graphical dependences of the change in the loss coefficient and the decrease in the sound pressure level
in the plate under study, which has damping discrete inserts for various variable parameters. The research
results can be used on production equipment for noise reduction and ensuring normal conditions labor on noise
factor.

Keywords: excited thin-walled steel structures, noise reduction, vibration-damping inserts,
excitation frequency, noise, loss coefficient.
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Аннотация

Приведены результаты теоретических и экспериментальных исследований эффективности
шумоподавления от возбужденных металлических тонкостенных конструкций, модернизированных
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с помощью дискретных вибродемпфирующих вставок. В рамках исследования выполнен анализ
факторов диссипации энергии колебаний пластины со вставками. Разработана схема размещения
в исследуемой конструкции вибродемпфирующих дискретных вставок. Для определения волнового
сопротивления демпфирующей вставки в пластине принята расчетная схема. Выдвинута гипотеза, что
при распространении изгибных волн процесс диссипации изгибной колебательной энергии в пластине с
дискретными резиновыми вставками определяется сухим и вязкоупругим трением между элементами
исследуемой конструкции. Показано, что процесс диссипации колебательной энергии в исследуемой
пластине такой же, как и в системе возбужденных пластин с штучными антивибрационными блоками,
расположенными на ее поверхности. При разработке математической модели шумоподавления от
колеблющейся пластины с дискретными вибродемпфирующими вставками были приняты необходимые
предположения и допущения. Приведены результаты экспериментальных исследований в виде
графических зависимостей изменения коэффициента потерь и снижения уровня звукового давления
в исследуемой пластине, имеющей демпфирующие дискретные вставки при различных переменных
параметрах Результаты исследований могут быть использованы на производственном оборудовании для
шумоподавления и обеспечения нормальных условий труда по шумовому фактору.

Ключевые слова: возбуждённые тонкостенные металлические конструкции, шумоподавление,
вибродемпфирующие вставки, частота возбуждения, шум, коэффициент потерь.

Introduction

Let us consider the problem of noise reduction during vibration excitation of thin-walled
steel structures (TSS). To reduce the transmission of vibration and noise, vibration isolation
materials and devices, such as rubber gaskets, shock absorbers and soundproofing materials,
can be used. These methods make it possible to isolate TSS from the environment and reduce
sound transmission.

Per sound power (W ), emitted by a plate TSS are affected by the oscillatory speed v2
and plate area S.

Effective protection against noise created by a vibrating TSS are damping methods
that affect the above parameters. Among damping methods, the most common is vibration
damping coatings (VDC) [1-4].

VDC are one of the effective means for reducing noise from excited TSS. VDC can
reduce the amplitude of vibrations of the TSS surface, which can lead to a decrease in the
surface area of emitted sound waves. This occurs due to the absorption of part of the vibrational
energy. VDC can reduce the speed of oscillations of TSS due to the absorption and dissipation
of oscillation energy. This leads to a decrease in the frequency and amplitude of the oscillations,
which in turn reduces the frequency and amplitude of the emitted noise.

However, the VDC does not fully meet the conditions of the task, that is, reducing the
noise level with the help of special TSS. Therefore, we propose the design of a rubber piece
vibration-damping insert (PVI), which is fixed in the perforation of a steel plate. Rubber gaskets
generally withstand a variety of environmental conditions such as humidity and temperature
changes.

A diagram with a discrete vibration-damping insert placed in the perforation hole of
the plate is shown in Figure 1.

Using loss factor (η) vibrational energy describes the dissipative properties of the VDC.
Energy is generated in the TSS in the event of oscillatory movements. The properties of VDC
are considered in studies [1-10].

The loss coefficient is used when assessing the dissipative properties of VDC and other
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materials used to reduce vibration and noise in engineering systems. The higher the loss
coefficient value, the more significantly the material suppresses vibrations and reduces sound
power. When selecting a VDC for a specific application, it is important to consider the loss
factor and compare it with the noise reduction and attenuation requirements of the system.

Existing mathematical models describing the process of dissipation of vibration
energy of plates with various types of coatings (soft, hard, reinforced) are quite sufficient
and informative. According to these mathematical models, the loss coefficient (η∑) can be
determined either in the structure of the coated object under study, or as the loss coefficient
of the coating material, if η∑ was established experimentally.

Expected effect of reducing TSS noise from vibration excitation:

∆L = 20 lg
η∑
η1
,

where η1, η∑, – the total loss coefficients of the plate before and after coating, respectively.
To calculate a specific noise reduction effect, it is necessary to use equations related to

material and structural losses for engineering calculations. To do this, you can use formulas to
estimate the loss coefficient and take into account the nature of the deformation of the coating.

For plates with vibrational excitation with PVI, there is no theoretical understanding
of the dissipation of vibrational energy.

A hypothesis is proposed according to which the dissipation of vibrational energy in
the ’plate–PVI’ system is a consequence of a combination of factors:

- the energy of the longitudinal wave is reduced by adding a PVI to the plate, which
in turn acts as an obstacle during the propagation of such a wave;

- dry friction occurs between the edge of the perforated hole of the plate and the
surface of the welding joint;

- viscoelastic friction occurs in the body of the ball-and-roll motor made of rubber
[11-13].

Physically, the process of energy dissipation of an excited plate with PVI largely
coincides with the physical picture in a system of plates with oscillatory excitation with a
partial local anti-vibration block, consisting of local components on its surface. In the study
[9], the antivibrator is considered as a local oscillatory system having certain mass, friction and
elastic components (Figure 2).

Fig. 1. Schematic illustration of wafer placement damping insert:
1 – metal plate; 2 – rubber damping insert
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Fig. 2. Design diagram of a local antivibrator

1. 1. Mathematical model of noise reduction of an oscillating plate with
discrete vibration-damping inserts

Figure 3 shows a plate with discrete vibration-damping rubber inserts.
To determine the numerical value of the drop in the sound pressure level of a plate

equipped with shock-absorbing discrete rubber inserts, we will use the method of wave
impedance of thin plates.

Fig. 3. Plate with vibration-damping inserts: 1 – metal plate; 2 – discrete rubber inserts

To determine the numerical value of the drop in the sound pressure level of a plate
equipped with shock-absorbing discrete rubber inserts, we will use the method of wave
impedance of thin plates.

Next, we denote:
N – the number of damping inserts;
ρr – the density of the damping rubber insert material, kg/m3;
m – the weight of one damping rubber insert, kg;
ρ – the density of the plate material, kg/m3;
G– dynamic shear modulus, N/m2;
ρw – air density, kg/m3;
c – the speed of sound in the air, m/s;
h – plate thickness, m;
kz – coefficient of rigidity of the insert material, N/m;
H – height of the damping insert, m;
d – diameter of the hole for the damping insert, m;
q – oscillatory movements of the damping insert, m;
x,y – coordinate axes of the plate, m;
γ – the dimensionless area of the plate, expressing the ratio of the actual area of the
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plate to the unit area;
v – Poisson’s ratio;
ω – oscillation frequency, s−1;
E – Young’s modulus, N/m2;
ξ – transverse displacement of the plate, m;
k – wave number of bending waves;
Fo – amplitude of transverse forces on a plate of unit area, N/m2;
Fa – the resistance force of the ambient air, related to the unit area of the plate, N/m2;
Z1, Z2, Z3 – the wave resistance of the plate, the damping insert, the plate with damping

inserts, respectively;
W0 – the energy radiated and absorbed by the plate with damping inserts for half the

oscillation period, W ;
W0 – energy in the plate with damping inserts, W ;
B – bending stiffness of the plate;
D – complex bending stiffness of the plate;
η1, η2, η∑ – loss coefficients of the plate, damping insert, plate with damping inserts

(total loss coefficient), respectively;
∆L – change in sound pressure level, dB;
i =

√
−1 – an imaginary unit.

We describe the process of changing the sound pressure level in the air using the
expression [7]:

∆L(ω) = 20 lg
(η∑(ω)

η1(ω)

)
. (1)

We will determine the loss coefficient using the Kirchhoff–Love hypothesis, according
to which the following assumptions are introduced:

- we consider the infinitesimal element of the plate to retain its length and straight
line, as well as the normal to the central plane;

- small elastic transverse deformations take place in the plate, residual deformations
do not occur;

- external forces cause a flat stressed state in the plate;
- when the plate is bent in the middle surface, deformations do not occur.

The internal forces in the plate are determined from the expressions:

M11 = B
(

∂2ξ
∂x2 + v ∂2ξ

∂y2

)
;M22 = B

(
∂2ξ
∂y2

+ v ∂2ξ
∂x2

)
;

M12 =M21 = B(1− v) ∂2ξ
∂x∂y

;Q1 = B ∂
∂x
∆ξ;Q2 = B ∂

∂y
∆ξ;

}
, (2)

where ∆ = ∂2

∂x2 +
∂2

∂y2
– Laplace operator.

Bending vibrations are determined from the expression:

∆(B∆ξ)− (1− v)

[
∂2

∂x2

(
B
∂2ξ

∂y2

)
+

∂2

∂y2

(
B
∂2ξ

∂x2

)
− 2

∂2

∂x∂y

(
B

∂2ξ

∂x∂y

)]
+ ρh

∂2ξ

∂t2
= F (x,y,t)

In the case where the plate thickness and , the vibration equation of the plate will take
the form:

B∆∆ξ + ρh
∂2ξ

∂t2
= F (x,y,t) (3)
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The force acting on the plate per unit area consists of the excitation forces and air
resistance.

The one-dimensional wave equation has the form:

d2ψ

dz2
− 1

c2
d2ψ

dt2
= 0, (4)

where ψ – speed potential of an air medium having a density ρw, having a pressure
increment p and the speed of acoustic waves V :

p = −ρw
dψ

dt
, V =

dψ

dz
. (5)

At ξ̇(t) = iωξeiωt the potential can be written in the form

ψ(z,t) = ψ0e
(λz+iωt)

and the solution to equation (4) will take the form:(
λ2 +

ω2

c2

)
ψ0e

iωt = 0

or

ψ = A1exp
(
iω
(
t+

z

c

))
+B1exp

(
iω
(
t− z

c

))
. (6)

Based on equations (5) and (6) we obtain:

Fa = ρwcξ̇(x,y,t). (7)

The exciting force is determined by the formula

F1(x,y,t) = F0exp
(
i
(
ωt− k

(
x+ y

)))
, (8)

and taking into account equation (7), we transform (3) to the form:

D

(
∂4ξ

∂x4
+ 2

∂4ξ

∂x2∂y2
+
∂4ξ

∂y4

)
+ ρh

∂2ξ

∂t2
= F0exp

(
i
(
ωt− k

(
x+ y

)))
− ρwc

∂ξ

∂t
, (9)

Let’s transform (9) to the form:

ξ(x,y,t) = ξ0exp
(
i
(
ωt− k

(
x+ y

)))
, (10)

or

∂

∂t
ξ(x,y,t) = ξ̇ = ξ0iωexp

(
i
(
ωt− k

(
x+ y

)))
. (11)

Let us substitute (10) into (9), perform differentiation, take (11) into account, and
obtain the expression:

D4k4ξ0e
i(ωt−k(x+y)) + ρhiωξ0iωe

i(ωt−k(x+y)) = F0e
i(ωt−k(x+y)) − ρwcξ0iωe

i(ωt−k(x+y)). (12)
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Flexural stiffness is calculated from the expression:

D =
(1 + iη)Eh3

12(1− v2)
. (13)

Based on (12) we determine:

z1(ω) =
F0

ξ0iω
=

4Dk4

iω
+ ρhiω + ρwc. (14)

Transforming (14), we obtain:

z1(ω) = 4η
Eh3

12(1− v2)

k4

ω
+ ρwc+ i

[
ρhω − 4

Eh3

12(1− v2)

k4

ω

]
, (15)

where k =
√

ω
r·cn – wave number, r = h√

12
– moment of inertia of the section of a plate

of unit area, cn =
√

E
ρ(1−v2)

– bending wave phase velocity.
Let’s divide the expression into imaginary and real parts:

Re(z1(ω)) =
4Bη

(r·cn)2ω + ρwc

Im(z1(ω)) =

[
ρh− 4B

(r·cn)2

]
ω

 , B =
Eh3

12(1− v2)
. (16)

We will write down the loss coefficient of the plate under the condition of damping of
the surrounding air:

η1(ω) =
W0

π ·WÏ

=
Re(z1(ω))

|z1(ω)|
=

1√
1 +

[
Im(z1(ω))
Re(z1(ω))

]2
or

η1(ω) =
1√√√√1 +

[[
ρh− 4B

(r·cn)2

]
ω

4Bη

(r·cn)2
ω+ρwc

]2 . (17)

We use equation (17) to construct a graph (Figure 4).
To determine the physical parameters of the damping insert, the main parameter of

the damping insert is determined. To determine the parameters of plate motion, the oscillatory
motion of the plate is studied. This includes the amplitude, frequency and mode of vibration of
the plate. Determining the wave properties of a medium includes the study of wave impedance,
which depends on the type of medium through which the wave caused by the vibration of the
plate passes.

The calculation of wave resistance is performed using the obtained data on the
movement of the plate and the properties of the medium; it is possible to additionally calculate
the wave resistance of the damping insert. This may require special equations and calculation
methods, depending on the specific conditions of the problem. After the calculation and
determination of the wave resistance value has been completed, it is necessary to analyze
the results. Evaluate how the characteristic impedance of the insert affects the vibration of
the plate and how effectively it absorbs or reduces vibration. The calculation scheme for
determining the wave resistance is shown in Figure 2.
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Fig. 4. Graph of loss coefficient values in the plate on the excitation frequency
at the initial data:h = 0,0025 m, E = 2,1 · 107 N/m2, v = 0,3,
ρ = 7850 kg/m3, ρw = 1,29 kg/m3, c = 330 m/s, η = 0,015

The force of elastic deformation can be taken into account using the stiffness coefficient:

kz = Gh. (18)

For the source of oscillatory motion of the damping insert, the following law is valid:

ξ(ω,t) = ξ0e
iωt, (19)

where ξ0 – amplitude of transverse movement of the plate.
This law may differ for different scenarios and types of plate vibration. To take into

account the influence of lateral displacement on the oscillatory movement of the damping
insert, a mathematical description of the movement of the plate should be performed, that
is, a mathematical description of the movement of the plate taking into account the lateral
displacement. This may require an equation for the vibration of the plate, which depends on
time and coordinates.

Determining the force acting on the insert using a mathematical description of the
movement of the plate, determining which parts of the movement affect the insert when it is
damped. This may involve breaking down the displacement into components and determining
how each component affects the elastic force and the friction force. Calculation of wave
resistance is used when obtaining data on forces (elastic deformation force and friction force)
to calculate the wave resistance of the damping insert. Analysis of the results involves
consideration of the obtained values of wave resistance and its influence on the oscillatory
motion of the damping insert. This analysis allows us to understand how the insert effectively
suppresses vibration, taking into account the lateral movement of the plate.

The equation of motion of the damping insert has the following form:

mq̈ + ktr(q̇ − ξ̇) + kz(q − ξ) = 0, (20)

where m = Hπ · r2ρr – weight of one damping insert.
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The oscillatory motion of the plate occurs with a certain frequency, which is also
transmitted to the damping insert, and their frequencies coincide in stationary mode.

The vibrational motion of the plate can be described by a parameter such as the
vibration frequency (set frequency), that is, the frequency at which the board oscillates or
vibrates. It is determined in relation to the magnitude of the external influence causing vibration
of the board. The damping insert allows you to control the amplitude and duration of vibration
of the plate. It is usually used to reduce vibration energy and keep the system in a less mobile
state. Damping can occur in various ways, for example through energy loss within the material
or through damping elements.

Stationary mode is a state of the system in which the amplitude and frequency of
vibration of the plate remain constant over time. It is achieved when the energy entering
the system is equal to the energy leaving the system as a result of attenuation and other
losses. If the set vibration frequency of the board is the same as the frequency in stationary
mode, this may mean that the system is in a resonant state, which can lead to an increase
in vibration amplitude. Controlling this process is important to prevent system damage or
ineffective operation.

Let us transform expression (19) to the form:

q(ω,t) = q0e
i(ωt), (21)

where q0 – amplitude of oscillatory movement of the insert
Solving jointly (21), (20), (19):

mq̈ + ktrq̇ + kzq = (ktriω + kz)ξ0e
iωt,

or

(mq̈ + ktrq̇ + kzq)

(ktriω + kz)
= ξ0e

iωt. (22)

We find the transfer force of inertia from the expression:

Fi = −mξ̈(ω,t) = F0e
iωt,

where

F0 = mω2ξ0. (23)

Damping insert impedance:

z2(ω) =
F0

q̇0
=
mω2ξ0
iωq0

. (24)

Let us transform (22) to the following form:

mω2eiωt

(ktriω + kz)

(
− mω

i
iωq0 + ktriωq0 +

kz
iω
iωq0

)
= F0e

iωt,

z2(ω) =
[
(mω2 − kz)i+ ktrω

] mω

ktriω + kz
,

z2(ω) =
ktrm

2ω4

k2z + k2trω
2
+ i

kz(mω
2 − kz)mω − k2trmω

3

k2z + k2trω
2

. (25)
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The real and imaginary parts are as follows:

Re(z2(ω)) =
ktrm

2ω4

k2z + k2trω
2
,

Im(z2(ω)) =
kz(mω

2 − kz)mω − k2trmω
3

k2z + k2trω
2

.

Loss factor for a single rubber insert:

η2(ω) =
Re(z2(ω))

|z2(ω)|
=

1√
1 +

[
Im(z2(ω))
Re(z2(ω))

]2
or

η2(ω) =
1√

1 +

[
kz(mω2−kz)mω−k2trmω3

ktrm2ω4

]2 . (26)

Using equation (26), we plot the graph of the relationship of the loss coefficient values
for the rubber insert (Figure 5).

Fig. 5. Graph of the relationship between the loss coefficient values in the rubber insert and
the excitation frequency in the plate with initial data:

for the plate – h = 0,0025 m, d = 0,01 m; to insert – G = 9,6 · 105 N/m2, ρ = 1400 kg/m3,
kz = 2,4 · 103, ktr = 1,1, m = 1,583 · 10−3 kg

The characteristic impedance of the composite plate is determined from the expression

z3(ω) = γ · z1(ω) +N · z2(ω).

From (15) and (25) taking into account γ = 4ab
1

, we obtain:

z3 =
γ4Bη

(r · cn)2
ω+γρwc+

Nktrm
2ω4

k2z + k2trω
2
+i

{
γ

[
ρh− 4B

(r · cn)2

]
ω+N

[
kz(mω

2 − kz)mω − k2trmω
3

k2z + k2trω
2

]}
.



NOISE Theory and Practice 79

The total loss coefficient in the plate is obtained by separating the imaginary and real
parts in the above equation, as a result we obtain:

ηΣ(ω) =
Re(z3(ω))

|z3(ω)|
=

1√
1 +

[
Im(z3(ω))
Re(z3(ω))

]2
or

ηΣ(ω) =
1√√√√√1 +

[
γ

[
ρh− 4B

(r·cn)2

]
ω+N

[
kz(mω2−kz)mω−k2trmω3

k2z+k2trω
2

]
γ4Bη

(r·cn)2
ω+γρwc+

Nktrm
2ω4

k2z+k2trω
2

]2 . (27)

Figure 6 shows the graph obtained using equation (27).

Fig. 6. Graph of the relationship between the values of the total loss coefficient in a plate
with a rubber insert and the excitation frequency with initial data:

for the plate – h = 0,0025 m, d = 0,01 m; γ = 0,25; for rubber insert – G = 9,6 · 103 N/m2,
ρ = 1400 kg/m3, kz = 2,4 · 103, ktr = 1,1, m = 1,583 · 10−3 kg, N = 80

The amount of reduction in sound pressure level is obtained from expression (1) and
equations (25), (17):

∆L(ω) = 20 lg



√√√√√√√√√√√
1+

[[
ρh− 4B

(r·cn)2

]
ω

4Bη

(r·cn)2
ω+ρwc

]2

1+

[
γ

[
ρh− 4B

(r·cn)2

]
ω+N

[
kz(mω2−kz)mω−k2trmω3

k2z+k2trω
2

]
γ4Bη

(r·cn)2
ω+γρwc+

Nktrm
2ω4

k2z+k2trω
2

]2


, (28)

where B = Eh3

12(1−v2)
, r = h√

12
, cn =

√
E

ρ(1−v2)
. We take into account that

20 lg(
√
x) = 4,343 ln(x),
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Then we write expression (2.28) in the form:

∆L = 4,343

[
ln

(
1 + 9ω2(

4ηω+ ρwc
ρh

)2)− ln

(
1 +

(
N

mω(kzmω2−k2z−k2trω
2)

k2z+k2trω
2 −3γρhω

N
ktrm

2ω4

k2z+k2trω
2+γρwc+4γρhηω

)2 )]
. (29)

In Figure 7 graphs of changes in sound pressure level and frequency (f) and on the
number of rubber inserts are plotted (N) [11, 12].

Fig. 7. Graph of the relationship between the sound pressure values of a plate with rubber
inserts and the excitation frequency with initial data:

for the plate – d = 0,01 m, h = 0,0025 m, γ = 0,25; for rubber insert – m = 1,583 · 10−3 kg,
G = 9,6 · 103 N/m2, ρ = 1400 kg/m3, kz = 2,4 · 103, ktr = 1,1,

N = [280, 220, 160, 80, 40, 20, 10, 1]

The use of equations such as (29) in engineering practice can significantly improve
the design and efficiency of damping systems, which are important in many industries where
vibration and noise control are critical.

Conclusions

1) Based on the analysis of theoretical studies, it is assumed that the physical process
of dissipation of flexural vibrational energy in a plate with discrete rubber inserts is determined
by dry and viscoelastic friction between the elements of the structure under study.

2) It is assumed that the process of dissipation of vibrational energy in the plate under
study is the same as in a system of excited plates with individual anti-vibration blocks located
on its surface.

3) Based on the hypotheses and assumptions adopted in the research, a mathematical
model was obtained, with the help of which it seems possible to reduce the level of sound
radiation of plates with PVI. The mathematical model can be used as a tool for engineers and
researchers to design and optimize systems with damping inserts to reduce sound radiation,
which is important in various fields including sound protection and vibration isolation.
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