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Abstract

Numerical and experimental investigations of non-uniform beams under static as well as under dynamic
loads are required in many engineering applications. However, this topic is also relevant in sports. In particular
the mechanical model of a non-uniform cantilever beam could be useful to analyze the dynamical behavior
of the blades used for the weapons of the Olympic fencing competitions. These sporting arms are known as
fleuret, épée and sabre. They can be compared in weight and length, but differ significantly in the design of the
individual cross-section. However, especially excellent athletes such as Alexander Anatoljewitsch Romankow,
Philippe Riboud or Anja Fichtel are able to perform fencing on a high level even if they have to use a weapon
that differs from the favorite one. For this reason it is interesting to compare basic dynamic properties of these
special sport equipment. Therefore, this paper presents novel results that describe the dynamics of fleuret, épée
and sabre using the results of simple experiments. It is (only) aimed (i) to highlight basic phenomena, (ii)
to compare the results, and (iii) to reflect the findings with the (non-professional) experience of the author in
practicing his sport as athlete and coach.
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HN3rubuesie kosrebannsas HEOAHOPOJHON KOHCOJBHOI baJjiku, HabJI0JaeMble TP
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AHHOTaAnUA

YncieHHbIE T SKCIIEPUMEHTAJIBHBIE HCCAEA0BAHUS HEQJHOPOJHBIX OAJIOK KaK MPU CTATHIECKHX, TaK U
IpH JHHAMHYECKUX HATPY3KaX TPEOYIOTCS BO MHOTHX HHXKEHEPHBIX npuMeHeHusix. OQHAKO 9Ta TeMa aKTyaJabHa,
u B cuopre. B wacrHOoCTH, MEXaHHYECKAasi MOJEJb HEOAHOPOMHOH KOHCOJIBHOH OaJIKu MOXKET ObITh IIOJIe3HA
JUIs AHAJIH3A JHHAMHYECKOTO [MOBEJEeHHS JIE3BHIT, HCIOJIb3YEMBbIX JIJIS OPYXKHS OJUMITHHCKHX COPEBHOBAHUM 110
¢exroBanno. DTO CIOPTHBHOE OPYKHE H3BECTHO KAK pjeper, mimara u cabiisi. Ix MOKHO CDABHHTH 110 BECY H
JITHHE, HO OHH CYIIIECTBEHHO OT/IHYAIOTCS KOHCTPYKIIHEH OTAeJIbHOro rmonepedroro cederns. OQHAKO 0COOEHHO
OTJINYHBIE CHOPTCMEHBI, Takue Kak AJjexcanap AmnaronbeBmd PomankoB, @uaunn Puby wnin Aws @uxres,
CITOCOOHBI BBITIOJIHSATH (PEXTOBAHUE HA BBICOKOM YDOBHE, Ja’K€ €CJIH HM MPHXOIHTCS HCIOJIB30BATH OPYIKUE,
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9THX CHENHAIBHBIX CIMOPTHBHBIX CHapsigoB. IlosToMy B JaHHOI CTaThe MPEICTABJIEHBI HOBBIE DE3YJBTATHI,
onuceiBaoniue JHHAMHUKY Gurepersl, muarn 1 cabyu ¢ HCHO/Ib30BAHAEM DE3Y/IbTATOB HPOCTHIX IKCHEPHMEHTOB.
Oro (ToNBKO) HAIpaBIeHO Ha TO, 4TOOBI (1) BBIJEIHTH OCHOBHBIE sIBJICHH:, (i) cpaBHHTH pe3yiabrarbl H (iii)
OTPa3HTh MOJIy YeHHBIE PE3YIBTATHI ¢ (HEMPO(pECCHOHAIBHBIM) OIMBITOM aBTOPA B 3aHITHIX CIIOPTOM B Ka4eCTBE
CITOPTCMEHA H TPEHEPA.

KiroueBbIe ciioBa: CTPYKTypHAasT JUHAMHKA, HEOJHOPOZHAs OaJjKka, SKCIIEPHMEHTAJIbLHOE

HCCIeJOBaHNIe, CIIOPTHBHOE OPY2KUe.

Introduction

From the engineering point of view the blades of the sporting arms fleuret, épée and
sabre, compare figure 1, can be understood as cantilever beams with non-uniform cross section.
The latter changes significantly from the mounting (close to the holder) to the top. All different
blades are flexible in horizontal as well as in vertical direction. However, it is not identical.
Fleuret and épée are designed to hit the vest of the opponent with the tip of the blade (followed
by elastic or in many cases also in-elastic buckling), the sabre is used strike in order to set a
touché. Therefore, fleuret and épée are more flexible in the vertical direction compared to the
horizontal direction. The opposite is true for the sabre that need to be stiffer in the vertical
direction.

Fig. 1. Fleuret (top), épée (middle) and sabre (bottom) analyzed in the experiments

Structural elements showing similar properties are well documented in literature.
Basic and advanced principles of structural dynamics have been described in detail by
Timoshenko [1] — a relevant starting point for all engineers working in structural dynamics.
A simplified analytical model for vibrations of non-uniform flexural beams with viscoelastic
properties has been proposed in [2|. Closed-form solutions for axially functionally graded
Timoshenko beams having uniform cross-section are discussed in [3].  Isotropic beams
with continuously changing cross-section have been studied in [4], providing solutions for
clamped-clamped as well as for simply supported boundaries at both ends.

Free vibrations of non-uniform cross-section and axially functionally graded Euler-
Bernoulli beams considering various boundary conditions using the differential transformation
method to derive the solution have been discussed in [5]. A higher order continuum theory,
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which contains higher-order equilibrium relation for moments of couple stress in addition to well-
known classical equilibrium relations for forces and moments of forces and only one additional
material length scale parameter has been applied to analyse the vibrational behaviour of axially
functionally graded tapered microbeams using the Rayleigh-Ritz method to obtain numerical
solutions [6]. Modal characteristics of a rectangular beam having a variable cross-section with
multiple cracks has been discussed in [7] considering different temperatures. The finite element
method has been applied in [8] to calculate both natural frequencies and modal shapes of so
called multistep nonuniform beams.

The references cited above are focussed on mathematical modelling as well as on
numerical evaluation of the derived models. However, it is also possible to find references that
combine theoretical and experimental work related to the scope of the present paper. Numerical
and experimental investigations of a cantilever beam structure considering nonlinearities in
geometry have been reported in [9]. The static deflection of initially curved beams, having
a shape that can be compared to the shape of fleuret, épée and sabre, has been discussed in
[10]. The dynamical behaviour of a non-uniform beam considering a transversely and axially
eccentric tip mass (especially interesting for fleuret and épée) has been analysed in [11].

It turns out that all these excellent reverences cannot directly be used to highlight
basic phenomena known from fencing with fleuret, épée and sabre. The theories applied in the
theoretical work are sophisticated, closed-form solutions for clamped-free boundary conditions
are not easy to derive and numerical tools such as the finite element method have to be applied to
solve many of the proposed models. Furthermore, experimental data obtained from vibration
measurements that can be used to characterize the dynamics of the sporting arms are still
missing in literature. For this reason, the present paper proposes an approach that combines
the classical theory of Euler-Bernoulli applied to cantilever beams with novel experimental
results characterizing the flexural vibration observed for fleuret, épée and sabre performing
simple experiments. Because of the experimental approach, it is not necessary to apply a
sophisticated mathematical model. However, the findings presented in this paper are relevant
as benchmark for numerical investigations or for the validation of numerical models.

1. Short Comments on Structural Dynamics

In order just to connect the experimental investigations with the principles of structural
dynamics, it is sufficient to apply the classical theory of Euler-Bernoulli for a uniform beam.
Following this approach it is, if necessary, at least possible to prove that natural frequencies
determined in the experiments have been determined in the “corrected” frequency range. This,
compared to some of the references, simple approach, is based on the equation of motion,
compare equation (1), in which w is the depending variable representing the displacement-field
that depends on time and space. The bending stiffness is represented by EI. p is the density
of the material and A is the cross section.

pA -+ [EI-w")" =0, (1)

To model a cantilever beam it is necessary to formulate proper boundary conditions,
compare equation (2), in which L is the length of the beam and ¢ is the time.

w(0,6) =0, w'(0,t)
,t

0,
I . " (2)
w'(Lit) =0, w"(Lt)=0,

Following the principles of structural dynamics, compare [1|, the closed-form solution
for the natural frequency reads
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(D) | OEI
Joi= =5\ oA (3)

Table 1 contains the normalized eigenvalues A, L of the first three eigenmodes. These values
have been found considering constant distribution of mass (pA) and bending stiffness (ET).

Table 1
Normalized eigenvalues of cantilever Beams

Number of eigenvalue
1 2 3
A L 1.8751 4.6941 10.996

Considering the arithmetic mean of the cross section areas listed in table 2 as well as
typical values for Young’s modulus 1.8e5 N/mm? and density 8.0 g/cm?® (maraging steel), it is
possible to calculate estimates for the first three natural frequencies for fleuret, épée and sabre
according to vertical deflections. These estimates are given in table 3. They will later on be
used to verify the experimental results.

Table 2
Cross sections at different positions (width x height)
W x H Position
Mounting | Middle Top
Fleuret 7x 12 3x4 3x2
Epée 20x 9 7x4 6 x4
Sabre 7x 18 3x6 2x5
Table 3
Numerical estimates for natural frequencies
fo / Hz Number of natural frequency
1 2 3
Fleuret 5.0 31.5 88.0
Epée 4.9 30.5 85.4
Sabre 8.4 52.6 147.3

2. Experimental Investigations

In order to determine time-dependent as well as frequency dependent dynamic
properties all sport arms have been analyzed. The kind of mounting is shown in figure 2 using
the example of the fleuret. A typical piezo-electric sensor mounted on the blade has been used
for the measurements. Vertical and horizontal vibrations have been determined subsequently
be changing the mounting position with a rotation of 90°. Impulse input as well as step input
have been used to excite the vibrations. To realize the impulse input, the blade has been
hit by another blade in the middle of the blade. This can be compared to the situation in
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the competition. The step input (with a magnitude of several centimeter) has been realized
manually by imposing a deflection at the tip of the blade. In both situations it has been
assured that non-linear effects have been omitted. All measurements have been recorded using
a sampling rate of 44.1 kHz to obtain a high frequency resolution.

Fig. 2. Mounting of test objects before measurement (shown via the example for the fleuret)

For épeé and sabre the impulse response and the step response is shown in figure 3. It
can be found that the impulse response decreases in a very short period of time. Due to the
kind of excitation, the step response seems to be dominated by the first bending modes. This
can clearly be observed for the sabre, compare figure 3 (right).

L T ‘ 1I———— I J-————Ei!:e;:nreﬁponse

= Step response | | |
— IMpulse response
= Impulse response
: I

normalized accelaration
normalized accelaration

timeins timein s

Fig. 3. Free vibration of épée (left) and sabre (right). Impulse response (black line), Step
response (gray line)

In order to estimate the decay time T60, the time-dependent behaviour has also been
analyzed using a logarithmic sale as shown in figure 4. It has been found that the decay time
varies between 0.2 s and 0.3 s. This relatively short time periods are essential for the referee
that has to analyze the fight in order to decide who is allowed to set a point because of a
successful attack or (alternatively) due to a successful riposte.
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Fig. 4. Decay of acceleration lever for épée (left) and sabre(right). Impulse response (black
line), Step response (gray line)

The frequency-dependent behavior is shown in figure 5. It contains the Fourier
transforms of several measurements performed for fleuret, épeé and sabre without additional
filtering. For this reason the effect of higher frequencies can be detected in all curves. However,
the results shown in this figure proof that the basic dynamic phenomena can be reproduced
even if such a simple test procedure is used.
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Fig. 5. Magnitude response calculated for impulse input (Imp.) and step input (Step) for
fleuret (top), épée (middle) and sabre (bottom). Left column — vibration in vertical direction,
right column — vibration in horizontal direction

A modal characteristic can be observed in all measurements below 50 Hz.

In this

frequency range, the modal damping seems to be low. However, at higher frequencies the
half-band-width increases. This might be caused by the effect of sound radiation that is more
relevant at the mid and high frequency range.

used. The resulting curves are shown in figure 6.

In order to detect the resonance frequencies as well as to quantify the amount of
damping at the first three resonances, linear averages of the curves shown in figure 5 have been



Thomas Kletschkowski
Flexural Vibrations of Non-Uniform Cantilever Beams Observed in Experimental Investigations on the

Dynamics of Fleuret, Epée and Sabre 14

Vertical

777747777ﬁ

T T T
- *‘ —— Florett —— Degen ——Sabel ”

relative magnitudes in dB rel. 1

frequency in Hz

Fig. 6. Frequency response for fleuret (blue curve), épée (red curve) and sabre (black curve)
in the lower frequency range

The resonance frequencies obtained for the fleuret from the curves shown in figure 6 are
summarized in table 4. Especially the first two resonances are close to the natural frequencies
listed in table 3. It is interesting to notice that the first mode occurs for all analyzed sporting
arms at 7.0 Hz. This could help to understand why an athlete specialized in fleuret fencing is
also capable to perform a Coupé with the épée in order to set a point directly behind the bell
guard.

Assuming that the first bending mode dominates the dynamics of all analyzed sporting
arms it is also possible to understand why athletes prefer to hit the weapon of the opponent
before starting a Coupé. With such a short blade contact (Battuta) the first bending mode
is exited and the (dynamic) stiffness of the blade is reduced. For this reason, less energy is
required to induce a bending of the blade that makes it possible to attack the back of the
opponent that cannot be reached directly. At higher frequencies the difference in the geometry
leads to different results for higher resonance frequencies.

Table 4
Resonance frequencies determined in measurements
fo / Hz Number of natural frequency for fleuret
1 2 3
Vertical vibration 7.0 24.0 57.0
Horizontal vibration 7.0 31.0 72.0

Using the method of the half-band-with for each individual resonance, the modal
damping parameters have been estimates. These results are summarized in table 5 and table 6.
They prove that the motion of the fleuret, the épeé and the sabre undergoes only a small amount
of damping in the first three modes. This means that the athlete must not waste energy by
dissipation or in other words, only a small amount of energy is required to “use” the dynamics
of the weapon in competition. This could be an explanation for the fact that excellent athletes
are able to perform fencing on a high individual level in the finals at the late afternoon, even
if the competition starts with the qualification rounds in the early morning.
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Table 5
Modal damping for vertical vibration
D in % Mode number
1 2 3
Fleuret 0.4 1.9 1.0
Epée 0.4 1.4 N.A.
Sabre 1.4 2.0 2.0
Table 6
Modal damping for horizontal vibration
D in % Mode number
1 2 3
Fleuret 0.3 0.8 1.2
Epée 0.4 0.3 2.1
Sabre 1.3 2.8 3.2
Conclusions

The present work presents experimental results that have been performed to study the
dynamical behavior of fleuret, épeé and sabre in time domain as well as in frequency domain.
The applied method is simple, however the results can be verified with simple analytical analysis.
Furthermore, it is easy to repeat the investigations. The main findings can be summarized as
follows:

e All analyzed sporting arms are structural elements with a small amount of modal
damping. A value of 3.2% has been detected as the maximum damping ratio.

e The first bending mode can be excited for all analyzed weapons at about 7.0 Hz.

e At higher frequencies the different non-uniform geometry causes different behavior
for the same sporting arm in horizontal and vertical direction. Furthermore, the difference
between the dynamics of fleuret, épée and sabre increases, if higher frequencies have to be
taken into account.

The presented results might be interesting for both athletes and coaches, because it
is possible to understand experiences known from training and competition. For example it is
possible to explain that the performance of a Coupé becomes easier after a short blade contact,
because the dynamic stiffness is lowered, if a fleuret or épeé vibrates in a resonance mode.

However, from an engineering point of view, the results could also be interesting. They
could be used to validate analytical as well as numerical models used to analyze the dynamics
of non-uniform beams. Furthermore, the results could also be of interest for the development
of robotics, capable to handle thin flexible structures with a low amount of modal damping.
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